Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mid-infrared InAs/GaInSb separate confinement heterostructure laser diode structures

Identifieur interne : 010363 ( Main/Repository ); précédent : 010362; suivant : 010364

Mid-infrared InAs/GaInSb separate confinement heterostructure laser diode structures

Auteurs : RBID : Pascal:01-0111853

Descripteurs français

English descriptors

Abstract

Despite recent progress in electronic structure engineering of type-II materials for mid-infrared lasers, suppression of Auger recombination at room temperature has been limited. We present an active region design, consisting of AlAsSb/InAs/GaInSb/InAs/AlAsSb wells separated by an InAs/AlGaSb superlattice, that overcomes this limitation. The 300 K calculated Auger recombination rate in this structure at the optimal lasing density is five times smaller than typical Shockley-Read-Hall (defect-assisted) recombination rates. An integrated separate confinement heterostructure design suitable for this active region is also described. The separate confinement region, which is a lightly doped InAs/AlGaSb superlattice, provides efficient hole transport and injection into the active region. For an estimated nonactive region modal cavity loss of 20 cm-1 and an optical mode width of 1.3 μm, the calculated internal threshold current density is 100 A/cm2 at 300 K for a single quantum well device. © 2001 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:01-0111853

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Mid-infrared InAs/GaInSb separate confinement heterostructure laser diode structures</title>
<author>
<name sortKey="Olesberg, J T" uniqKey="Olesberg J">J. T. Olesberg</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Iowa</region>
</placeName>
<wicri:cityArea>Department of Physics and Astronomy and the Optical Science and Technology Center, University of Iowa, Iowa City</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Physics, University of Illinois at Chicago, Chicago</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Flatte, Michael E" uniqKey="Flatte M">Michael E. Flatte</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Iowa</region>
</placeName>
<wicri:cityArea>Department of Physics and Astronomy and the Optical Science and Technology Center, University of Iowa, Iowa City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hasenberg, T C" uniqKey="Hasenberg T">T. C. Hasenberg</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Iowa</region>
</placeName>
<wicri:cityArea>Department of Physics and Astronomy and the Optical Science and Technology Center, University of Iowa, Iowa City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Grein, C H" uniqKey="Grein C">C. H. Grein</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Iowa</region>
</placeName>
<wicri:cityArea>Department of Physics and Astronomy and the Optical Science and Technology Center, University of Iowa, Iowa City</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">01-0111853</idno>
<date when="2001-03-15">2001-03-15</date>
<idno type="stanalyst">PASCAL 01-0111853 AIP</idno>
<idno type="RBID">Pascal:01-0111853</idno>
<idno type="wicri:Area/Main/Corpus">011A37</idno>
<idno type="wicri:Area/Main/Repository">010363</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium compounds</term>
<term>Auger effect</term>
<term>Band structure</term>
<term>Electron-hole recombination</term>
<term>Experimental study</term>
<term>Gallium compounds</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Interface states</term>
<term>Quantum well lasers</term>
<term>Semiconductor quantum wells</term>
<term>Semiconductor superlattices</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>4255P</term>
<term>4260B</term>
<term>7321F</term>
<term>7363H</term>
<term>7867D</term>
<term>7350G</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium composé</term>
<term>Semiconducteur III-V</term>
<term>Effet Auger</term>
<term>Recombinaison électron trou</term>
<term>Puits quantique semiconducteur</term>
<term>Laser puits quantique</term>
<term>Superréseau semiconducteur</term>
<term>Structure bande</term>
<term>Etat interface</term>
<term>Aluminium composé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Despite recent progress in electronic structure engineering of type-II materials for mid-infrared lasers, suppression of Auger recombination at room temperature has been limited. We present an active region design, consisting of AlAsSb/InAs/GaInSb/InAs/AlAsSb wells separated by an InAs/AlGaSb superlattice, that overcomes this limitation. The 300 K calculated Auger recombination rate in this structure at the optimal lasing density is five times smaller than typical Shockley-Read-Hall (defect-assisted) recombination rates. An integrated separate confinement heterostructure design suitable for this active region is also described. The separate confinement region, which is a lightly doped InAs/AlGaSb superlattice, provides efficient hole transport and injection into the active region. For an estimated nonactive region modal cavity loss of 20 cm-1 and an optical mode width of 1.3 μm, the calculated internal threshold current density is 100 A/cm2 at 300 K for a single quantum well device. © 2001 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>89</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Mid-infrared InAs/GaInSb separate confinement heterostructure laser diode structures</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OLESBERG (J. T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FLATTE (Michael E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HASENBERG (T. C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GREIN (C. H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics and Astronomy and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607</s1>
</fA14>
<fA20>
<s1>3283-3289</s1>
</fA20>
<fA21>
<s1>2001-03-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2001 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>01-0111853</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Despite recent progress in electronic structure engineering of type-II materials for mid-infrared lasers, suppression of Auger recombination at room temperature has been limited. We present an active region design, consisting of AlAsSb/InAs/GaInSb/InAs/AlAsSb wells separated by an InAs/AlGaSb superlattice, that overcomes this limitation. The 300 K calculated Auger recombination rate in this structure at the optimal lasing density is five times smaller than typical Shockley-Read-Hall (defect-assisted) recombination rates. An integrated separate confinement heterostructure design suitable for this active region is also described. The separate confinement region, which is a lightly doped InAs/AlGaSb superlattice, provides efficient hole transport and injection into the active region. For an estimated nonactive region modal cavity loss of 20 cm-1 and an optical mode width of 1.3 μm, the calculated internal threshold current density is 100 A/cm2 at 300 K for a single quantum well device. © 2001 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B60B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C20D</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B70C50G</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>4255P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>4260B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7321F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7363H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7867D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>7350G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Effet Auger</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Auger effect</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Recombinaison électron trou</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Electron-hole recombination</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Puits quantique semiconducteur</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Semiconductor quantum wells</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Laser puits quantique</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Quantum well lasers</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Superréseau semiconducteur</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Semiconductor superlattices</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Structure bande</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Band structure</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Etat interface</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Interface states</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Aluminium composé</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Aluminium compounds</s0>
</fC03>
<fN21>
<s1>071</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0110M000091</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 010363 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 010363 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:01-0111853
   |texte=   Mid-infrared InAs/GaInSb separate confinement heterostructure laser diode structures
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024